- #1
Dethrone
- 717
- 0
Suppose we are given the function $y=2+\frac{1}{x^2}$. Prove that given $x>\frac{1}{(\epsilon)^{1/2}}$, where $\epsilon > 0$, then $2- \epsilon < y < 2 + \epsilon$.
So the first part is easy:
$$x>\frac{1}{(\epsilon)^{1/2}}$$
$$x^2>\frac{1}{\epsilon}$$
$$\frac{1}{x^2}<\epsilon$$
$$2+\frac{1}{x^2}<2+\epsilon$$
Now, any hints as to how to prove $2-\epsilon < y$? (Wondering)
So the first part is easy:
$$x>\frac{1}{(\epsilon)^{1/2}}$$
$$x^2>\frac{1}{\epsilon}$$
$$\frac{1}{x^2}<\epsilon$$
$$2+\frac{1}{x^2}<2+\epsilon$$
Now, any hints as to how to prove $2-\epsilon < y$? (Wondering)