- #1
alexmahone
- 304
- 0
Show that if $(a, b)=1$ then $(a+b,\ a^2-ab+b^2)=1\text{ or }3$.
My attempt:
$(a+b,\ a^2-ab+b^2)=(a+b,\ a^2-ab+b^2-(a+b)(a+b))=(a+b,\ -3ab)=(a+b,\ 3ab)$
$(a,\ a+b)=(b,\ a+b)=1$
$\therefore (a+b,\ ab)=1$
Consider 2 cases:
1) $(a+b,\ 3)=1 \implies(a+b,\ 3ab)=1$
2) $(a+b,\ 3)=3\implies 3|a+b$
$\displaystyle (a+b,\ ab)=1\implies\left(\frac{a+b}{3},\ ab\right)=1$
$\displaystyle (a+b,\ 3ab)=3\left(\frac{a+b}{3},\ ab\right)=3$
Is that ok?
My attempt:
$(a+b,\ a^2-ab+b^2)=(a+b,\ a^2-ab+b^2-(a+b)(a+b))=(a+b,\ -3ab)=(a+b,\ 3ab)$
$(a,\ a+b)=(b,\ a+b)=1$
$\therefore (a+b,\ ab)=1$
Consider 2 cases:
1) $(a+b,\ 3)=1 \implies(a+b,\ 3ab)=1$
2) $(a+b,\ 3)=3\implies 3|a+b$
$\displaystyle (a+b,\ ab)=1\implies\left(\frac{a+b}{3},\ ab\right)=1$
$\displaystyle (a+b,\ 3ab)=3\left(\frac{a+b}{3},\ ab\right)=3$
Is that ok?
Last edited: