- #1
AnthonyAcc
- 5
- 0
Show that ([tex]^{n}_{n}[/tex]) - ([tex]^{n}_{n-1}[/tex]) + ([tex]^{n}_{n-2}[/tex]) - ([tex]^{n}_{n-3}[/tex]) + ...([tex]^{n}_{0}[/tex]) = 0
(a+b)[tex]^{n}[/tex] = [tex]\sum^{\infty}_{\nu=0}[/tex] ([tex]^{n}_{\nu}[/tex])a[tex]^{\nu}[/tex]b[tex]^{n-\nu}[/tex]a=1
b=-1
0 = (1+(-1))[tex]^{n}[/tex] = [tex]\sum^{\infty}_{\nu=0}[/tex]([tex]^{n}_{\nu}[/tex]) 1[tex]^{\nu}[/tex](-1)[tex]^{n-\nu}[/tex] = [tex]\sum^{\infty}_{\nu=0}[/tex]([tex]^{n}_{\nu}[/tex])(-1)[tex]^{n-\nu}[/tex] =
...I don't know what to do here...
= [tex]\sum^{n}_{\nu=0}[/tex]([tex]^{n}_{n-\nu}[/tex])(-1)[tex]^{\nu}[/tex] = ([tex]^{n}_{n}[/tex]) - ([tex]^{n}_{n-1}[/tex]) + ([tex]^{n}_{n-2}[/tex]) - ([tex]^{n}_{n-3}[/tex]) + ...([tex]^{n}_{0}[/tex])That is if that last equality is correct and makes sense to be there.
Any suggestions?
Also, how can I make it so everything that follows the Sigma doesn't look like it is being superscripted?
Thanks!
(a+b)[tex]^{n}[/tex] = [tex]\sum^{\infty}_{\nu=0}[/tex] ([tex]^{n}_{\nu}[/tex])a[tex]^{\nu}[/tex]b[tex]^{n-\nu}[/tex]a=1
b=-1
0 = (1+(-1))[tex]^{n}[/tex] = [tex]\sum^{\infty}_{\nu=0}[/tex]([tex]^{n}_{\nu}[/tex]) 1[tex]^{\nu}[/tex](-1)[tex]^{n-\nu}[/tex] = [tex]\sum^{\infty}_{\nu=0}[/tex]([tex]^{n}_{\nu}[/tex])(-1)[tex]^{n-\nu}[/tex] =
...I don't know what to do here...
= [tex]\sum^{n}_{\nu=0}[/tex]([tex]^{n}_{n-\nu}[/tex])(-1)[tex]^{\nu}[/tex] = ([tex]^{n}_{n}[/tex]) - ([tex]^{n}_{n-1}[/tex]) + ([tex]^{n}_{n-2}[/tex]) - ([tex]^{n}_{n-3}[/tex]) + ...([tex]^{n}_{0}[/tex])That is if that last equality is correct and makes sense to be there.
Any suggestions?
Also, how can I make it so everything that follows the Sigma doesn't look like it is being superscripted?
Thanks!
Last edited: