- #1
Dustinsfl
- 2,281
- 5
$A\cap (B - C) = (A\cap B) - (A\cap C)$For the identity, we will show $A\cap (B - C) \subseteq (A\cap B) - (A\cap C)$ and $A\cap (B - C) \supseteq (A\cap B) - (A\cap C)$.
Let $x\in A\cap (B - C)$.
Then $x\in A$ and $x\in B - C$.
So $x\in A$ and $x\in B$ and $x\notin B\cap C$.
Is this the right approach? I know $B-C = $ some other expression but I can't remember it.
Let $x\in A\cap (B - C)$.
Then $x\in A$ and $x\in B - C$.
So $x\in A$ and $x\in B$ and $x\notin B\cap C$.
Is this the right approach? I know $B-C = $ some other expression but I can't remember it.