- #1
solakis1
- 422
- 0
Given:
$a+b+c-3(abc)^\dfrac{1}{3}=0$ and $\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3}) $ and $\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$ and
$\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$
Then prove:
$(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
$a+b+c-3(abc)^\dfrac{1}{3}=0$ and $\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3}) $ and $\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$ and
$\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$
Then prove:
$(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$