- #1
Adgorn
- 130
- 18
Homework Statement
Prove the following form for an inner product in a complex space V:
##\langle u,v \rangle## ##=## ##\frac 1 4####\left| u+v\right|^2## ##-## ##\frac 1 4####\left| u-v\right|^2## ##+## ##\frac 1 4####\left| u+iv\right|^2## ##-## ##\frac 1 4####\left| u-iv\right|^2##
Homework Equations
N/A
The Attempt at a Solution
By opening the expressions and canceling equals I've managed to bring the expression
##\left| u+v\right|^2## ##-## ##\left| u-v\right|^2## ##+## ##\left| u+iv\right|^2## ##-## ##\left| u-iv\right|^2##
into the form of ##2(\langle u,v \rangle + \langle v,u \rangle +\langle u,iv \rangle +\langle vi,u \rangle)##. Deviding by 4 means the expression in the question may be written as ##\frac 1 2 (\langle u,v \rangle + \langle v,u \rangle +\langle u,iv \rangle +\langle iv,u \rangle)##. This is where I got stuck, I have managed to reach this expression yet I do not know how to show it follows the three axioms or alternatively simplify it further to a point where it is a multiple of ##\langle u,v \rangle##.
Any help would be greatly appriciated