- #1
The_Iceflash
- 50
- 0
Homework Statement
Prove that the following sequence has the following limit:
[tex]\lim_{n\rightarrow \infty} {{{\frac{n}{n^2+3n+1}}} = 0 [/tex]
Homework Equations
N/A
The Attempt at a Solution
First I did the following:
[tex]{\frac{n}{n^2+3n+1} < {\frac{n}{n^2+3n} = {\frac{n}{n(n+3)} = {\frac{1}{n+3}[/tex]
Then:
[tex]{\frac{1}{n+3} < \epsilon[/tex]
[tex]{{n+3} > \frac{1}{\epsilon}[/tex]
[tex]{{n} > \frac{1}{\epsilon}-3[/tex]Putting it all together:
Let [tex]\epsilon > 0[/tex] be given
Let [tex]{{n} > \frac{1}{\epsilon}-3[/tex]
Then: [tex]{\left|\frac{n}{n^2+3n+1}\right| - 0 = \frac{n}{n^2+3n+1} < \frac{n}{n^2+3n} = \frac{1}{n+3} < {\epsilon }[/tex]
Therefore [tex]\left|\frac{n}{n^2+3n+1}-0\right| < \epsilon [/tex]
QED
Am I going about this the right way?
Last edited: