Proving $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$ with $\tan(x+y)$ & $\tan(x-y)$

  • MHB
  • Thread starter kaliprasad
  • Start date
In summary, the given conversation discusses the formula for proving $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$ with $\tan(x+y)$ and $\tan(x-y)$, as well as the steps and restrictions for using this equation. It also mentions the potential real-world applications of this formula in fields such as physics, engineering, and geometry.
  • #1
kaliprasad
Gold Member
MHB
1,335
0
If $\tan(x+y) = a + b$ and $\tan(x-y) = a - b$ show that $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$
 
Mathematics news on Phys.org
  • #2
My solution:
\[\left\{\begin{matrix} x+y = \arctan (a+b)\\ x-y = \arctan (a-b) \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x = \arctan (a+b) + \arctan (a-b) = \arctan \left ( \frac{2a}{1-(a^2-b^2)} \right ) \\ 2y = \arctan (a+b) - \arctan (a-b) = \arctan \left ( \frac{2b}{1+(a^2-b^2)} \right ) \end{matrix}\right.\]

\[ \Rightarrow \left\{\begin{matrix} \tan(2x) = \frac{2\tan x}{1-\tan ^2x}= \frac{2a}{1-(a^2-b^2)}\\ \tan(2y) = \frac{2\tan y}{1-\tan ^2y}= \frac{2b}{1+(a^2-b^2)} \end{matrix}\right. \Rightarrow \left\{\begin{matrix} a \tan x = \frac{a^2}{1-(a^2-b^2)}(1-\tan ^2x)\\ b \tan y = \frac{b^2}{1+(a^2-b^2)}(1-\tan ^2y) \end{matrix}\right.\]

\[ \Rightarrow \left\{\begin{matrix} (a\tan x)^2+(1-(a^2-b^2))(a\tan x) -a^2 = 0\\ (b\tan y)^2+(1+(a^2-b^2))(b\tan y) -b^2 = 0 \end{matrix}\right. \]

\[ \Rightarrow \left\{\begin{matrix} a\tan x = \frac{1}{2}\left ( -(1-(a^2-b^2)) \pm \sqrt{(1-(a^2-b^2))^2+4a^2} \right )\\ b\tan x = \frac{1}{2}\left ( -(1+(a^2-b^2)) \pm \sqrt{(1+(a^2-b^2))^2+4b^2} \right ) \end{matrix}\right.\] \[ \Rightarrow \left\{\begin{matrix} a \tan x = \frac{1}{2}\left ( -(1-(a^2-b^2)) \pm \sqrt{1+(a^2-b^2)^2+ 2(a^2+b^2)}\right )\\ b \tan y = \frac{1}{2}\left ( -(1+(a^2-b^2)) \pm \sqrt{1+(a^2-b^2)^2+ 2(a^2+b^2)}\right ) \end{matrix}\right. \] \[ \Rightarrow a \tan x - b \tan y = \frac{1}{2}(-1+(a^2-b^2)+1+(a^2-b^2)) = a^2-b^2.\]
 
Last edited:
  • #3
My Solution:

$\tan(x+y) = \frac{\tan\,x+\tan\,y}{1-\tan\,x\tan\,y}$ or $(a+b)(1-\tan\,x\tan\,y) = \tan\,x+\tan\,y \cdots(1)$
Similarly $(a-b)(1+\tan\,x\tan\,y) = \tan\,x-\tan\,y\cdots(2)$
multiplying (1) by (a-b) and (2) by (a+b) and adding we get $(a^2-b^2) = 2a\tan\,x-2b\tan \,y$
divide both sides by 2 to get the result.
 

FAQ: Proving $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$ with $\tan(x+y)$ & $\tan(x-y)$

What is the formula for proving $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$ with $\tan(x+y)$ & $\tan(x-y)$?

The formula is $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$.

How do I use $\tan(x+y)$ and $\tan(x-y)$ to prove the given equation?

To prove the equation, you can use the trigonometric identities $\tan(x+y) = \frac{\tan\,x + \tan\,y}{1-\tan\,x\, \tan\,y}$ and $\tan(x-y) = \frac{\tan\,x - \tan\,y}{1+\tan\,x\, \tan\,y}$.

What are the steps to proving the equation using the given identities?

The steps to prove the equation are:

  1. Substitute the values of $\tan(x+y)$ and $\tan(x-y)$ into the given equation.
  2. Use the identities $\tan(x+y) = \frac{\tan\,x + \tan\,y}{1-\tan\,x\, \tan\,y}$ and $\tan(x-y) = \frac{\tan\,x - \tan\,y}{1+\tan\,x\, \tan\,y}$ to simplify the equation.
  3. Manipulate the equation using algebraic techniques to reach the desired result of $a^2 - b^2$.

Are there any restrictions on the values of $a$ and $b$ for this equation to hold true?

Yes, there are restrictions on the values of $a$ and $b$. The equation will hold true if $a \neq 0$, $b \neq 0$, and $a \neq b$.

Can this equation be used in real-world applications?

Yes, this equation can be used in various real-world applications, such as in physics, engineering, and geometry, to solve problems involving angles and distances.

Similar threads

Back
Top