MHB Proving a trigonometric identity II

AI Thread Summary
The discussion centers on proving the trigonometric identity (2sinx)/(secxtan(2x)) = 2cos^2x - csc^2x + cot^2x. The original poster struggles with various approaches, including starting from both sides of the equation without success. A suggestion is made to rewrite the left-hand side by moving secant to the numerator and applying the double-angle identity for sine, which leads to a simplification that ultimately matches the right-hand side. The conversation emphasizes the importance of verifying identities before extensive manipulation. The thread concludes with a successful proof of the identity using algebraic simplifications and trigonometric identities.
egillesp
Messages
5
Reaction score
0
Hi,

I need help proving the following trig identity,
(2sinx)\overline{secxtan(2x)}=2cos^2x-csc^2x+cot^2x
I have tried starting from the left hand side, the right hand side, and doing both together, but nothing seems to work.

One of the ways I tried:
LHS: (2sinx)\overline{tan(2x)}\overline{cosx}
=2tanx\overline{tan(2x)}
=2tanx\overline{2tanx}\overline{1-tan^2x} using the tan(2x) identity
=1\overline{1-tan^2x}
=1\overline{1-(sin^x)/(cos^2x)}
=1\overline{(cos^2x-sin^2x)}\overline{cos^2x}
=1\overline{cos(2x)}\overline{cos^2x}
=[1/(cos(2x))][1/cos^2x]
=[1/(1-2sin^2x)][1/cos^2x]
=1/(cos^2x-2sin^2x*cos^2x)
=sec^2x/(1-2sin^2x)
=(tan^2x+1)/(1-2(1-cos^2x))
=(tan^2x+1)/(2cos^2x-1)
and I just don't get anywhere

Help would be greatly appreciated :)
 
Mathematics news on Phys.org
Rather than us editing all of your posts, the $\LaTeX$ code for expressing a fraction is:

\frac{numerator}{denominator}

Also, you need to wrap your code with tags, such as the MATH tags, which are generated by clicking the $\sum$ button on our posting toolbar. :D

I would recommend editing your post so that it is easier to read...
 
This is what I would do...first state the identity:

$$\frac{2\sin(x)}{\sec(x)\tan(2x)}=2\cos^2(x)-\csc^2(x)+\cot^2(x)$$

Next, verify it is an identity before potentially wasting time:

>>click here<<

W|A says we're good to go. So, let's begin with the left side of the identity:

$$\frac{2\sin(x)}{\sec(x)\tan(2x)}$$

Let's move the secant function from the denominator to the numerator as a cosine function:

$$\frac{2\sin(x)\cos(x)}{\tan(2x)}$$

Next, in the numerator, let's apply the double-angle identity for sine:

$$\frac{\sin(2x)}{\tan(2x)}$$

Rewrite the tangent function in terms of sine and cosine:

$$\frac{\sin(2x)}{\frac{\sin(2x)}{\cos(2x)}}$$

Simplify algebraically:

$$\cos(2x)$$

Apply a double-angle identity for cosine:

$$2\cos^2(x)-1$$

Apply the Pythagorean identity $$1=\csc^2(x)-\cot^2(x)$$:

$$2\cos^2(x)-\csc^2(x)+\cot^2(x)$$

And we're done. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top