- #1
Matt Chu
- 16
- 0
Homework Statement
Consider a harmonic wave given by
$$\Psi (x, t) = U(x, y, z) e^{-i \omega t}$$
where ##U(x, y, z)## is called the complex amplitude. Show that ##U## satisfies the Helmholtz equation:
$$ (\nabla + k^2) U (x, y, z) = 0 $$
Homework Equations
Everything important already in the problem.
The Attempt at a Solution
[/B]
The first thing I attempted to do was to express ##U## in terms of ##\Psi## and ##e^{-i \omega t}##. This led me to a long set of derivations that in no way gave me anything remotely close to zero. I'm confused as to how to solve this, as the ##k## component of the Helmholtz equation seems to be problematic; it seems the only way to prove that the whole expression equals zero would be if ##U = 0##.