- #1
physicsRookie
- 5
- 0
Define a sequence
[tex]A_n(r) = \int_{-1}^1(1-x^2)^n \cos(rx)\, dx, \qquad n \in \mathbb{N}, r \in \mathbb{R}.
[/tex]
Prove that
[tex]A_n(r) = \frac{n!}{r^{2n+1}}[P_n(r)\sin r - Q_n(r)\cos r] [/tex]
where [tex]P_n[/tex] and [tex]Q_n[/tex] are two polynomials with integer coefficients. What is the degree of [tex]P_n[/tex] and of [tex]Q_n[/tex]?
Can anyone help me? Thanks.
[tex]A_n(r) = \int_{-1}^1(1-x^2)^n \cos(rx)\, dx, \qquad n \in \mathbb{N}, r \in \mathbb{R}.
[/tex]
Prove that
[tex]A_n(r) = \frac{n!}{r^{2n+1}}[P_n(r)\sin r - Q_n(r)\cos r] [/tex]
where [tex]P_n[/tex] and [tex]Q_n[/tex] are two polynomials with integer coefficients. What is the degree of [tex]P_n[/tex] and of [tex]Q_n[/tex]?
Can anyone help me? Thanks.