- #1
Ted123
- 446
- 0
Homework Statement
Let [tex]z,p,q \in \mathbb{C}[/tex] be complex parameters.
Determine that the Gamma and Beta integrals:
[tex]\displaystyle \Gamma (z) = \int_0^{\infty} t^{z-1} e^{-t}\;dt[/tex]
[tex]\displaystyle B(p,q) = \int^1_0 t^{p-1} (1-t)^{q-1}\;dt[/tex]
converge absolutely for [tex]\text{Re}(z)>0[/tex] and [tex]p,q>0[/tex] respectively and explain why they do.
The Attempt at a Solution
How do I show that they converge absolutely and why do they?