MHB Proving an absolute value inequality

AI Thread Summary
The discussion focuses on proving the inequality if |a| ≤ b, then -b ≤ a ≤ b, for real numbers a and b. The definition of absolute value is clarified, distinguishing cases where a is non-negative and negative. In Case I, it is noted that if a ≥ 0, then |a| = a, leading to a ≤ b, while in Case II, if a < 0, then |a| = -a, resulting in -b < 0 ≤ a. Participants express confusion regarding the logical structure of the proof, particularly the incorrect assertion that a > b in Case I. The need for a clearer, more coherent proof is emphasized.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
If $\left| a \right| \le b$, then $-b\le a\le b$.
Let $a,b \in\Bbb{R}$ The definition of the absolute value is $ \left| x \right|= x, x\ge 0$ and $\left| x \right|=-x, x< 0$, where x is some real number.

Case I:$a\ge 0$, $\left| a \right|=a>b$

Case II: a<0, $\left| a \right|=-a<b$the solution is $-b<0\le a\le b$

I work on a number line. yet I still have trouble with the proof.
 
Mathematics news on Phys.org
At which point of the proof are you facing difficulties?
 
Well, I, for one, have trouble understanding the proof since I don't follow its logical structure, and not just because $a>b$ should be $a\le b$ in case I. Maybe someone can write a more coherent proof.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top