- #1
stunner5000pt
- 1,465
- 4
Let U be a subspace of Rn
If aX is in U, where a is non zero number and X is in Rn, show that X is in U
THis seems so obvious... but i m not sure how to show this by a proof
aX is in U and aX is in Rn for sure and U is a subspace of Rn.
Is it true that if U is closed under scalar multiplication then X is in U ?
Please advise!
If aX is in U, where a is non zero number and X is in Rn, show that X is in U
THis seems so obvious... but i m not sure how to show this by a proof
aX is in U and aX is in Rn for sure and U is a subspace of Rn.
Is it true that if U is closed under scalar multiplication then X is in U ?
Please advise!