- #1
solakis1
- 422
- 0
Given the following system of axioms
For all A,B,C:
1) A+B=B+A
2) A+(B+C) =(A+B)+C
3) A.B=B.A
4) A.(B.C) = (A.B).C
5) A.(B+C)= A.B+A.C
6) A+0=A
7) A.1=A
8) A+(-A)=1
9) A.(-A)=0
10) A+(BC) = (A+B).(A+C)
11) \(\displaystyle 1\neq 0\)
Then prove :
If A+B=0 then A=0 AND B=0
For all A,B,C:
1) A+B=B+A
2) A+(B+C) =(A+B)+C
3) A.B=B.A
4) A.(B.C) = (A.B).C
5) A.(B+C)= A.B+A.C
6) A+0=A
7) A.1=A
8) A+(-A)=1
9) A.(-A)=0
10) A+(BC) = (A+B).(A+C)
11) \(\displaystyle 1\neq 0\)
Then prove :
If A+B=0 then A=0 AND B=0