- #1
Seydlitz
- 263
- 4
Homework Statement
Prove Bernoulli's Inequality: if ##h>-1##
[itex](1+h)^n \geq 1+hn[/itex]
Homework Equations
Binomial Theorem
[itex](a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}[/itex]
The Attempt at a Solution
If ##h=0##
[itex](1+0)^n=1[/itex]
[itex]1=1[/itex]
If ##h>0##
This
[itex](1+h)^n \geq 1+hn[/itex]
Implies
[itex](1+h)^n=\sum_{k}^{n}\binom{n}{k}h^{k}[/itex]
[itex]\sum_{k=2}^{n}\binom{n}{k}h^{k} \geq 0[/itex]
So the proof is done.