- #1
andrew1
- 20
- 0
Hi,
I'm currently stuck on a few questions regarding binary relations as I'm unsure on how to prove their properties.
R is defined on N by aRb if and only if a <= b and b <= a+5
Is R reflexive, symmetric, antisymmetric, transitive?
S is defined on Z (union) {x + 1/2 : x is an element of all integers} by aSb if and only if a - b is an even integer.
Is S reflexive, symmetric, antisymmetric, transitive?
I'm currently stuck on a few questions regarding binary relations as I'm unsure on how to prove their properties.
R is defined on N by aRb if and only if a <= b and b <= a+5
Is R reflexive, symmetric, antisymmetric, transitive?
S is defined on Z (union) {x + 1/2 : x is an element of all integers} by aSb if and only if a - b is an even integer.
Is S reflexive, symmetric, antisymmetric, transitive?