- #1
Aryth1
- 39
- 0
The problem is this:
Let $L$ be a Boolean lattice. For all $a<b\in L$, prove that the interval $[a,b] = \uparrow a \cap \downarrow b$ is a Boolean lattice under the partial ordering inherited from $L$.
What I've managed to do so far:
I used the fact that $[a,b]$ was a poset and showed that, for any $x,y\in [a,b]$, $x\vee y\in [a,b]$ and $x\wedge y\in [a,b]$ which proved that $[a,b]$ was a sublattice of $L$. From this we get that $[a,b]$ is distributive for free, since if $L$ had a sublattice that wasn't distributive, then $L$ would not be distributive. All that remains is to show that $[a,b]$ is complemented. I cannot seem to figure this out. I know that, if we take some $x\in [a,b]$ then a complement exists in $L$ since $L$ is a Boolean lattice, but I don't know how to show that that complement is in $[a,b]$ also.
Any hints would be greatly appreciated!
Let $L$ be a Boolean lattice. For all $a<b\in L$, prove that the interval $[a,b] = \uparrow a \cap \downarrow b$ is a Boolean lattice under the partial ordering inherited from $L$.
What I've managed to do so far:
I used the fact that $[a,b]$ was a poset and showed that, for any $x,y\in [a,b]$, $x\vee y\in [a,b]$ and $x\wedge y\in [a,b]$ which proved that $[a,b]$ was a sublattice of $L$. From this we get that $[a,b]$ is distributive for free, since if $L$ had a sublattice that wasn't distributive, then $L$ would not be distributive. All that remains is to show that $[a,b]$ is complemented. I cannot seem to figure this out. I know that, if we take some $x\in [a,b]$ then a complement exists in $L$ since $L$ is a Boolean lattice, but I don't know how to show that that complement is in $[a,b]$ also.
Any hints would be greatly appreciated!