- #1
daniel_i_l
Gold Member
- 868
- 0
Homework Statement
f(x) = (x+1)/x^2
a)prove that f is bounded in N (N is the set of natural numbers so we have to prove that f(N) is a bounded set)
b)find supf(N) and inff(N).
c) does f have a maximum or minimum in N?
Homework Equations
The Attempt at a Solution
First I proved that for every x,y >= 1, if x<y then f(x)>f(y):
y>x>=1 and so y^2 > x^2 and so y^2 - x^2 > 0
xy=yx and so x^2 * y < y^2 * x and so
y^2 * x - x^2 * y > 0 and together
y^2 * x - x^2 * y + y^2 - x^2 = y^2 * (x+1) - x^2 * (y+1) > 0 and so
(y^2 * (x+1) - x^2 * (y+1)) / (x^2 * y^2) = (x+1)/(x^2) - (y+1)/(y^2) > 0and so (x+1)/(x^2) > (y+1)/(y^2).
Now, f(1) = 2 and so for all x>1 f(x)<2 and so maxf(N) = supf(N) = 2.
Also, for every x>=1 f(x)>0. The limit of f at infinity is 0. So if f(N) has a lower bound c>0 then since f has a limit of zero at infinity we can find some M>0 so that for every x>M (we can find an x in N) |f(x)|<c => f(x)<c which means that c isn't a lower bound so inff(N) = 0 and there's no minimum.
Is that right (especially the proof)? Does it matter that I did a,b and c in the same step?
Thanks.