- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
Show for each sequence $(a_n)\subset (0, \infty)$ for which the sequence $\left (\frac{a_{n+1}}{a_n}\right )$ is bounded, that $\sqrt[n]{a_n}$ is also bounded and that $$\lim \sup \sqrt[n]{a_n}\leq \lim \sup \frac{a_{n+1}}{a_n}$$ I have done teh following:
The sequence $\left (\frac{a_{n+1}}{a_n}\right )$ is bounded. Let $L:=\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\in \mathbb{R}$. Since all numbers $\frac{a_{n+1}}{a_n}$ are positive, it holds that $L \geq 0$.
We consider an arbitrary number $b$ with $0 \leq L < b$. It exists a $n_0\in \mathbb{N}$, such that $0<\frac{a_{n+1}}{a_n}<b$ for all $n\geq n_0$.
For all $n\geq n_0$ we have :
\begin{align*}0<\sqrt[n]{a_n}&=a_n^{\frac{1}{n}}=\left (a_n\cdot \frac{a_{n-1}}{a_{n-1}}\cdot \frac{a_{n-2}}{a_{n-2}}\cdot \frac{a_{n-3}}{a_{n-3}}\cdot \ldots \cdot \frac{a_{n_0+1}}{a_{n_0+1}}\cdot \frac{a_{n_0}}{a_{n_0}}\right )^{\frac{1}{n}} =\left ( \underset{(n-n_0)-\text{Factors}}{\underbrace{\frac{a_{n}}{a_{n-1}}\cdot \frac{a_{n-1}}{a_{n-2}}\cdot \frac{a_{n-2}}{a_{n-3}}\cdot \ldots \cdot \frac{a_{n_0+1}}{a_{n_0}}}}\cdot a_{n_0}\right )^{\frac{1}{n}}\\ & <\left ( b^{n-n_0}\cdot a_{n_0}\right )^{\frac{1}{n}}=\left ( b^{n}\cdot b^{-n_0}\cdot a_{n_0}\right )^{\frac{1}{n}}=b\cdot \left ( b^{-n_0}\cdot a_{n_0}\right )^{\frac{1}{n}}=b\cdot \sqrt[n]{ b^{-n_0}\cdot a_{n_0}}\end{align*}
For the fixed number $q:=b^{-n_0}\cdot a_{n_0}$ the sequence $(\sqrt[n]{q})$ converges to $1$, and so each subsequence converges to $1$.
This means that there is an $\epsilon>0$ such that $|\sqrt[n]{q}-1|<\epsilon \Rightarrow -\epsilon<\sqrt[n]{q}-1<\epsilon \Rightarrow 1-\epsilon<\sqrt[n]{q}<1+\epsilon $.
So $\sqrt[n]{a_n}$ is bounded above by $b(1+\epsilon)$.
Since $\sqrt[n]{a_n}<b\cdot \sqrt[n]{ b^{-n_0}\cdot a_{n_0}}$ the limit of each convergent subsequence of $(\sqrt[n]{a_n})$ is less or equal to $b$. So we get \begin{equation*}\limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq b\end{equation*} This holds for all $b>\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=L$.
We choose $b=L+\frac{1}{m}$ for $m\in \mathbb{N}$.
Then \begin{equation*}\limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq L+\frac{1}{m}, \ \ \ \text{ for all } m\in \mathbb{N}\end{equation*}
Taking the limit $m \rightarrow \infty$ we get \begin{equation*}\limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq L \Rightarrow \limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\end{equation*}
Is everything correct? Also the upper bound of the sequence $(\sqrt[n]{a_n})$ ?
:unsure:
Show for each sequence $(a_n)\subset (0, \infty)$ for which the sequence $\left (\frac{a_{n+1}}{a_n}\right )$ is bounded, that $\sqrt[n]{a_n}$ is also bounded and that $$\lim \sup \sqrt[n]{a_n}\leq \lim \sup \frac{a_{n+1}}{a_n}$$ I have done teh following:
The sequence $\left (\frac{a_{n+1}}{a_n}\right )$ is bounded. Let $L:=\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\in \mathbb{R}$. Since all numbers $\frac{a_{n+1}}{a_n}$ are positive, it holds that $L \geq 0$.
We consider an arbitrary number $b$ with $0 \leq L < b$. It exists a $n_0\in \mathbb{N}$, such that $0<\frac{a_{n+1}}{a_n}<b$ for all $n\geq n_0$.
For all $n\geq n_0$ we have :
\begin{align*}0<\sqrt[n]{a_n}&=a_n^{\frac{1}{n}}=\left (a_n\cdot \frac{a_{n-1}}{a_{n-1}}\cdot \frac{a_{n-2}}{a_{n-2}}\cdot \frac{a_{n-3}}{a_{n-3}}\cdot \ldots \cdot \frac{a_{n_0+1}}{a_{n_0+1}}\cdot \frac{a_{n_0}}{a_{n_0}}\right )^{\frac{1}{n}} =\left ( \underset{(n-n_0)-\text{Factors}}{\underbrace{\frac{a_{n}}{a_{n-1}}\cdot \frac{a_{n-1}}{a_{n-2}}\cdot \frac{a_{n-2}}{a_{n-3}}\cdot \ldots \cdot \frac{a_{n_0+1}}{a_{n_0}}}}\cdot a_{n_0}\right )^{\frac{1}{n}}\\ & <\left ( b^{n-n_0}\cdot a_{n_0}\right )^{\frac{1}{n}}=\left ( b^{n}\cdot b^{-n_0}\cdot a_{n_0}\right )^{\frac{1}{n}}=b\cdot \left ( b^{-n_0}\cdot a_{n_0}\right )^{\frac{1}{n}}=b\cdot \sqrt[n]{ b^{-n_0}\cdot a_{n_0}}\end{align*}
For the fixed number $q:=b^{-n_0}\cdot a_{n_0}$ the sequence $(\sqrt[n]{q})$ converges to $1$, and so each subsequence converges to $1$.
This means that there is an $\epsilon>0$ such that $|\sqrt[n]{q}-1|<\epsilon \Rightarrow -\epsilon<\sqrt[n]{q}-1<\epsilon \Rightarrow 1-\epsilon<\sqrt[n]{q}<1+\epsilon $.
So $\sqrt[n]{a_n}$ is bounded above by $b(1+\epsilon)$.
Since $\sqrt[n]{a_n}<b\cdot \sqrt[n]{ b^{-n_0}\cdot a_{n_0}}$ the limit of each convergent subsequence of $(\sqrt[n]{a_n})$ is less or equal to $b$. So we get \begin{equation*}\limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq b\end{equation*} This holds for all $b>\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=L$.
We choose $b=L+\frac{1}{m}$ for $m\in \mathbb{N}$.
Then \begin{equation*}\limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq L+\frac{1}{m}, \ \ \ \text{ for all } m\in \mathbb{N}\end{equation*}
Taking the limit $m \rightarrow \infty$ we get \begin{equation*}\limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq L \Rightarrow \limsup_{n\rightarrow \infty}\sqrt[n]{a_n}\leq\limsup_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\end{equation*}
Is everything correct? Also the upper bound of the sequence $(\sqrt[n]{a_n})$ ?
:unsure: