- #1
Hall
- 351
- 88
- Homework Statement
- ##cof ~A## means the cofactor matrix of A, and ##(cof~ A)^t## means the transpose of cofactor matrix of A (do you call it adjoint of A, well I too used to, but no longer. det A = determinant of A and I is the identity matrix of order compatible with LHS.
- Relevant Equations
- The idea I would use is to show that all diagonal elements of ##(cof~A)^t~A## is equal to ##det ~A## and rest of all the elements are zero.
i-th column of ##cof~A## =
$$
\begin{bmatrix}
(-1)^{I+1} det~A_{1i} \\
(-1)^{I+2} det ~A_{2i}\\
\vdots \\
(-1)^{I+n} det ~A_{ni}\\
\end{bmatrix}$$
Therefore, the I-th row of ##(cof~A)^t## = ##\big[ (-1)^{I+1} det~A_{1i}, (-1)^{I+2} det ~A_{2i}, \cdots, (-1)^{I+n} det ~A_{ni} \big]##
The I-th -- I-th element of ##(cof~A)^t ~ A## is =
$$
\big[ (-1)^{I+1} det~A_{1i}, (-1)^{I+2} det ~A_{2i}, \cdots, (-1)^{I+n} det ~A_{ni}\big] \times
\begin{bmatrix}
a_{1i}\\
a_{2i}\\
\vdots \\
a_{ni}\\
\end{bmatrix}
= \sum_{k=1}^{n} (-1)^{I+k} a_{ki} det~A_{ki}$$
Well, the RHS is simply a ##det ~A## expanded along the ith column. Therefore, all diagonal elements of ##(cof~A)^t ~A## is equal to ##det~A##.
Now, I would try to prove that all non-diagonal elements are zero. Consider the ##I-j th element## of ##(cof~A)^t~A##
$$
\big[ (-1)^{I+1} det~A_{1i}, (-1)^{I+2} det ~A_{2i}, \cdots, (-1)^{I+n} det ~A_{ni}\big] \times
\begin{bmatrix}
a_{1i}\\
a_{2j}\\
\vdots \\
a_{nj}\\
\end{bmatrix}
= \sum_{k=1}^{n} (-1)^{I+j} a_{kj} det A_{ki}$$
But I'm unable to prove that RHS is equal to zero. Will you help me?
Note: My computer in not making me to write small I and so somewhere where there should be a small I we have a big I.
$$
\begin{bmatrix}
(-1)^{I+1} det~A_{1i} \\
(-1)^{I+2} det ~A_{2i}\\
\vdots \\
(-1)^{I+n} det ~A_{ni}\\
\end{bmatrix}$$
Therefore, the I-th row of ##(cof~A)^t## = ##\big[ (-1)^{I+1} det~A_{1i}, (-1)^{I+2} det ~A_{2i}, \cdots, (-1)^{I+n} det ~A_{ni} \big]##
The I-th -- I-th element of ##(cof~A)^t ~ A## is =
$$
\big[ (-1)^{I+1} det~A_{1i}, (-1)^{I+2} det ~A_{2i}, \cdots, (-1)^{I+n} det ~A_{ni}\big] \times
\begin{bmatrix}
a_{1i}\\
a_{2i}\\
\vdots \\
a_{ni}\\
\end{bmatrix}
= \sum_{k=1}^{n} (-1)^{I+k} a_{ki} det~A_{ki}$$
Well, the RHS is simply a ##det ~A## expanded along the ith column. Therefore, all diagonal elements of ##(cof~A)^t ~A## is equal to ##det~A##.
Now, I would try to prove that all non-diagonal elements are zero. Consider the ##I-j th element## of ##(cof~A)^t~A##
$$
\big[ (-1)^{I+1} det~A_{1i}, (-1)^{I+2} det ~A_{2i}, \cdots, (-1)^{I+n} det ~A_{ni}\big] \times
\begin{bmatrix}
a_{1i}\\
a_{2j}\\
\vdots \\
a_{nj}\\
\end{bmatrix}
= \sum_{k=1}^{n} (-1)^{I+j} a_{kj} det A_{ki}$$
But I'm unable to prove that RHS is equal to zero. Will you help me?
Note: My computer in not making me to write small I and so somewhere where there should be a small I we have a big I.