- #1
squenshl
- 479
- 4
Homework Statement
##z## is a complex number such that ##z = \frac{a+bi}{a-bi}##, where ##a## and ##b## are real numbers. Prove that ##\frac{z^2+1}{2z} = \frac{a^2-b^2}{a^2+b^2}##.
Homework Equations
The Attempt at a Solution
I calculated
\begin{equation*}
\begin{split}
z = \frac{a+bi}{a-bi} &= \frac{a+bi}{a-bi}\times \frac{a+bi}{a+bi} \\
&= \frac{a^2+2abi-b^2}{a^2+b^2} \\
&= \frac{a^2-b^2}{a^2+b^2}+\frac{2ab}{a^2+b^2}i.
\end{split}
\end{equation*}
But sticking that ugly thing into ##\frac{z^2+1}{2z}## gives me something nasty. I'm sure there is a much simpler way!