- #1
member 731016
- Homework Statement
- Please see below
- Relevant Equations
- Please see below
For this problem,
Let ##a_n = \frac{1}{n(\ln n)^p}##
##b_n = \frac{1}{(n \ln n)^p} = \frac{1}{(n^*)^p}##
We know that ##\sum_{2 \ln 2}^{\infty} \frac{1}{(n^*)^p}## is a p-series with ##n^* = n\ln n##, ##n^* \in \mathbf{R}##
Assume p-series stilll has the same property when ##n^* \in \mathbb{R}## instead of ##n \in \mathbb{N}##
This implies tht P-series is convergent when ##p > 1## and divergent when ##p \leq 1##
However, if we consider ##n^* = n \ln n## ##n^* \in \mathbb{N}## then ##\frac{1}{n (\ln n)^p} \leq \frac{1}{(n^*)^p}## when ##n \geq N##
Thus since ##\sum_{n = 2}^{\infty} \frac{1}{(n^*)^p}## converges for ##p > 1## then ##\sum_{n = 2}^{\infty} \frac{1}{n(\ln n)^p}## converges for ##p > 1## by comparison test
Since ##\sum_{n = 2}^{\infty} \frac{1}{(n^*)^p}## diverges for ##p \leq 1## then ##\sum_{n = 2}^{\infty} \frac{1}{n(\ln n)^p}## this implies that the other series diverges for ##p \leq 0## by comparison test
However, does anybody please know whether my proof is correct? I’m also not sure why author did not consider ##0 < p \leq 1##.
Thanks!
Let ##a_n = \frac{1}{n(\ln n)^p}##
##b_n = \frac{1}{(n \ln n)^p} = \frac{1}{(n^*)^p}##
We know that ##\sum_{2 \ln 2}^{\infty} \frac{1}{(n^*)^p}## is a p-series with ##n^* = n\ln n##, ##n^* \in \mathbf{R}##
Assume p-series stilll has the same property when ##n^* \in \mathbb{R}## instead of ##n \in \mathbb{N}##
This implies tht P-series is convergent when ##p > 1## and divergent when ##p \leq 1##
However, if we consider ##n^* = n \ln n## ##n^* \in \mathbb{N}## then ##\frac{1}{n (\ln n)^p} \leq \frac{1}{(n^*)^p}## when ##n \geq N##
Thus since ##\sum_{n = 2}^{\infty} \frac{1}{(n^*)^p}## converges for ##p > 1## then ##\sum_{n = 2}^{\infty} \frac{1}{n(\ln n)^p}## converges for ##p > 1## by comparison test
Since ##\sum_{n = 2}^{\infty} \frac{1}{(n^*)^p}## diverges for ##p \leq 1## then ##\sum_{n = 2}^{\infty} \frac{1}{n(\ln n)^p}## this implies that the other series diverges for ##p \leq 0## by comparison test
However, does anybody please know whether my proof is correct? I’m also not sure why author did not consider ##0 < p \leq 1##.
Thanks!