- #1
bugatti79
- 794
- 1
Homework Statement
Show that a sequence ##f_n \to f \in C[0,1]## with the sup norm ##|| ||_\infty##, then ##f_n \to f \in C[0,1]## with the integral norm.
The Attempt at a Solution
given ##\epsilon > 0 \exists n_0 \in N## s.t
##||(fn-f) (x)|| < \epsilon \forall n > n_0## with ## x \in [a,b]##
ie ##\forall \epsilon > 0 \forall n_0 \in N## s.t
##sup |(f_n-f)(x)|=sup|f_n(x)-f(x)|## with ##x \in C[0,1]## and ##n \in \mathbb{N} \implies f_n \to f \in C[0,1]##
if this is correct, do I attempt the same for the integral norm?