- #1
andyfeynman
- 10
- 0
Homework Statement
Show that the sequence {xn}:
xn := (21/1 - 1)2 + (21/2 - 1)2 + ... + (21/n - 1)2 is convergent.
Homework Equations
The Attempt at a Solution
If n > m,
|xn - xm| = (21/n - 1)2 + (21/(n-1) - 1)2 + ... + (21/(m+1) - 1)2
< (21/n)2 + (21/(n-1))2 + ... + (21/(m+1))2
< (21/(m+1))2 + (21/(m+2))2 + ...
= 41/m
Let ɛ > 0. We choose N such that 41/N < ɛ for all n > m > N.
Then |xn - xm| < 41/N < ɛ for all n > m > N.