- #1
Dustinsfl
- 2,281
- 5
If [itex]\{a_n\}\to A, \ \{a_nb_n\}[/itex] converge, and [itex]A\neq 0[/itex], then prove [itex]\{b_n\}[/itex] converges.
Let [itex]\epsilon>0[/itex]. Then [itex]\exists N_1,N_2\in\mathbb{N}, \ n\geq N_1,N_2[/itex]
[tex]|a_n-A|<\frac{\epsilon}{2}[/tex]
And let [itex]\{a_nb_n\}\to AB[/itex]
So, [itex]|a_nb_n-AB|<\epsilon[/itex]
I don't know how to show b_n is < epsilon.
Let [itex]\epsilon>0[/itex]. Then [itex]\exists N_1,N_2\in\mathbb{N}, \ n\geq N_1,N_2[/itex]
[tex]|a_n-A|<\frac{\epsilon}{2}[/tex]
And let [itex]\{a_nb_n\}\to AB[/itex]
So, [itex]|a_nb_n-AB|<\epsilon[/itex]
I don't know how to show b_n is < epsilon.