- #1
utleysthrow
- 25
- 0
Homework Statement
[tex]\sum \frac{(-1)^{n}}{n+n^{2}}[/tex]
Does this series converge as n -> infinity?
Homework Equations
The Attempt at a Solution
First, by the absolute convergence test, [tex]\sum \frac{(-1)^{n}}{n+n^{2}}[/tex] should converge if [tex]\sum \left|\frac{(-1)^{n}}{n+n^{2}}\right|[/tex] converges.
Second, [tex]\sum \left|\frac{(-1)^{n}}{n+n^{2}}\right| = \frac{1}{n+n^{2}}< \sum 1/n^{2}[/tex]
Because the sum 1/n^2 converges, by the comparison test, [tex]\sum \left|\frac{(-1)^{n}}{n+n^{2}}\right|[/tex] converges.
Which means that [tex]\sum \frac{(-1)^{n}}{n+n^{2}}[/tex] converges as well (by the absolute convergence test).