- #1
jaci55555
- 29
- 0
Homework Statement
Prove that the series sum[n=0 to inf] (z+2)^(n-1)/((n+1)^3 * 4^n)
converges for |z+2| <=4
Homework Equations
The Attempt at a Solution
sum[n=0 to inf] (z+2)^(n-1)/((n+1)^3 * 4^n) <= sum[n=0 to inf] |(z+2)^(n-1)/((n+1)^3 * 4^n)|
<= sum[n=0 to inf] |(z+2)|^(n-1)/(|(n+1)|^3 * 4^n)
<= sum[n=0 to inf] (4)^(n-1)/(|(n+1)|^3 * 4^n)
<= sum[n=0 to inf] 1/((n+1)^3 * 4)