- #1
twoflower
- 368
- 0
Hi all,
my task is to solve the convergence of the sum in dependence to the parameter a real.
[tex]
\sum_{n=1}^{\infty} \frac{a^{n}}{1+a^{n}}
[/tex]
I did it this way:
First I found out that if the sum converges, a will have to be in interval (-1, 1). So how to prove that for these values of parameter the sum converges?
Let's try d'Alembert's criterion, which tells us this:
[tex]
\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} < 1 \Rightarrow \sum a_{n}{} is convergent
[/tex]
So:
[tex]
\lim_{n \rightarrow \infty} \frac{a^{n+1}}{1+a^{n+1}} : \frac{a^{n}}{1+a^{n}} =
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a^{n+1}.(1+a^{n})}{a^{n}.(1+a^{n+1})} =
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a.(1+a^{n})}{1+a.a^{n}} =
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a}{a^{n+1} + 1} + \lim_{n \rightarrow \infty} \frac{a^{n+1}}{a^{n+1} + 1}
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a}{a^{n+1} + 1} = \lim_{n \rightarrow \infty} \frac { \frac{a}{a}}{a^{n} + \frac{1}{a}} = \frac{1}{0 + \frac{1}{a}} = 0
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a^{n+1}}{a^{n+1} + 1} = \lim_{n \rightarrow \infty} \frac {1}{1 + \frac{1}{a^{n+1}}} = 0
[/tex]
Thus
[tex]
\lim_{n \rightarrow \infty} \frac {a^{n+1}}{a^{n+1} + 1} : \frac{a^{n}}{1+a^{n}} = 0 + 0 = 0
[/tex]
This way I proved the convergence for a in (-1, 1)
Is it ok?
Thank you for your comments.
my task is to solve the convergence of the sum in dependence to the parameter a real.
[tex]
\sum_{n=1}^{\infty} \frac{a^{n}}{1+a^{n}}
[/tex]
I did it this way:
First I found out that if the sum converges, a will have to be in interval (-1, 1). So how to prove that for these values of parameter the sum converges?
Let's try d'Alembert's criterion, which tells us this:
[tex]
\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} < 1 \Rightarrow \sum a_{n}{} is convergent
[/tex]
So:
[tex]
\lim_{n \rightarrow \infty} \frac{a^{n+1}}{1+a^{n+1}} : \frac{a^{n}}{1+a^{n}} =
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a^{n+1}.(1+a^{n})}{a^{n}.(1+a^{n+1})} =
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a.(1+a^{n})}{1+a.a^{n}} =
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a}{a^{n+1} + 1} + \lim_{n \rightarrow \infty} \frac{a^{n+1}}{a^{n+1} + 1}
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a}{a^{n+1} + 1} = \lim_{n \rightarrow \infty} \frac { \frac{a}{a}}{a^{n} + \frac{1}{a}} = \frac{1}{0 + \frac{1}{a}} = 0
[/tex]
[tex]
\lim_{n \rightarrow \infty} \frac {a^{n+1}}{a^{n+1} + 1} = \lim_{n \rightarrow \infty} \frac {1}{1 + \frac{1}{a^{n+1}}} = 0
[/tex]
Thus
[tex]
\lim_{n \rightarrow \infty} \frac {a^{n+1}}{a^{n+1} + 1} : \frac{a^{n}}{1+a^{n}} = 0 + 0 = 0
[/tex]
This way I proved the convergence for a in (-1, 1)
Is it ok?
Thank you for your comments.