- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Hi,
Given $ A+B+C=\pi$, I need to prove $ cosA+cosB+cosC\leq \frac{3}{2}$.
I wish to ask if my following reasoning is correct.
First, I think of the case where A and B are acute angles, then I can use the Jensen's Inequality to show that the following is true.
$ cos\frac{A+B}{2}\geq \frac{cosA+cosB}{2}$
Carrying on with the working, I get
$ sin\frac{C}{2}\geq \frac{cosA+cosB}{2}$
$ 2sin\frac{C}{2}\geq cosA+cosB$
$ cosA+cosB\leq 2sin\frac{C}{2}$
$ cosA+cosB+cosC\leq 2sin\frac{C}{2}+cosC$
$ cosA+cosB+cosC\leq 2sin\frac{C}{2}+1-2sin^2C$
Completing square the RHS to obtain
$ cosA+cosB+cosC\leq -2(sin\frac{C}{2}-\frac{1}{2})^2+\frac{3}{2}$
Now, it's obvious to see that $ cosA+cosB+cosC\leq \frac{3}{2}$
My question is, can I solve the question by thinking A and B are acute angles and ignore the angle C right from the start so that I can let f(x)=cosx and notice that the curve of f(x)=cos x in the interval $x\in (0,\frac{\pi}{2})$ take the convex shape which in turn I can apply the Jensen's inequality without a problem?
Thanks.
Given $ A+B+C=\pi$, I need to prove $ cosA+cosB+cosC\leq \frac{3}{2}$.
I wish to ask if my following reasoning is correct.
First, I think of the case where A and B are acute angles, then I can use the Jensen's Inequality to show that the following is true.
$ cos\frac{A+B}{2}\geq \frac{cosA+cosB}{2}$
Carrying on with the working, I get
$ sin\frac{C}{2}\geq \frac{cosA+cosB}{2}$
$ 2sin\frac{C}{2}\geq cosA+cosB$
$ cosA+cosB\leq 2sin\frac{C}{2}$
$ cosA+cosB+cosC\leq 2sin\frac{C}{2}+cosC$
$ cosA+cosB+cosC\leq 2sin\frac{C}{2}+1-2sin^2C$
Completing square the RHS to obtain
$ cosA+cosB+cosC\leq -2(sin\frac{C}{2}-\frac{1}{2})^2+\frac{3}{2}$
Now, it's obvious to see that $ cosA+cosB+cosC\leq \frac{3}{2}$
My question is, can I solve the question by thinking A and B are acute angles and ignore the angle C right from the start so that I can let f(x)=cosx and notice that the curve of f(x)=cos x in the interval $x\in (0,\frac{\pi}{2})$ take the convex shape which in turn I can apply the Jensen's inequality without a problem?
Thanks.