- #1
AiRAVATA
- 173
- 0
Sorry to keep bothering, but I am preparing an exam based on Spivak's book on forms (chapter 7 of tome 1).
I need to prove that if [itex]\dim V \le 3[/itex], then every [itex]\omega \in \Lambda^2(V)[/itex] is decomposable, where an element [itex]\omega \in \Lambda^k(V)[/itex] is decomposable if [itex]\omega =\phi_1\wedge\dots\wedge\phi_k[/itex] for some [itex]\phi_i \in V^*=\Lambda^1(V)[/itex].
I think I must use the inner product, but I am not sure. If [itex]\omega \in \Lambda^2(V)[/itex], then
[tex]\omega=a_{12} \phi_1\wedge \phi_2+a_{13}\phi_1\wedge\phi_2+a_{23}\phi_2\wedge \phi_3[/tex]
I know that if [itex]\{v_1,v_2,v_3\}[/itex] are a basis of [itex]V[/itex], then
[tex]\begin{array}{l} i_{v_1}\phi_1\wedge\phi_2\wedge\phi_3=\phi_2\wedge\phi_3 \\
i_{v_2}\phi_1\wedge\phi_2\wedge\phi_3=-\phi_1\wedge\phi_3 \\
i_{v_3}\phi_1\wedge\phi_2\wedge\phi_3=\phi_1\wedge\phi_2
\end{array}[/tex]
so
[tex]\omega=(a_{12}i_{v_3}-a_{13}i_{v_2}+a_{23}i_{v_1}) \phi_1\wedge\phi_2\wedge\phi_3[/tex]
and given the linearity
[tex]\omega=i_v\phi_1\wedge\phi_2\wedge\phi_3[/tex]
where [itex]v=a_{21}v_1-a_{13}v_2+a_{12}v_3[/itex].
Does that prove the result?
Other idea I had is to express [itex]\phi_i[/itex] in terms of the base of [itex]\Lambda^1(V)[/itex], but I seem to going nowhere.
I need to prove that if [itex]\dim V \le 3[/itex], then every [itex]\omega \in \Lambda^2(V)[/itex] is decomposable, where an element [itex]\omega \in \Lambda^k(V)[/itex] is decomposable if [itex]\omega =\phi_1\wedge\dots\wedge\phi_k[/itex] for some [itex]\phi_i \in V^*=\Lambda^1(V)[/itex].
I think I must use the inner product, but I am not sure. If [itex]\omega \in \Lambda^2(V)[/itex], then
[tex]\omega=a_{12} \phi_1\wedge \phi_2+a_{13}\phi_1\wedge\phi_2+a_{23}\phi_2\wedge \phi_3[/tex]
I know that if [itex]\{v_1,v_2,v_3\}[/itex] are a basis of [itex]V[/itex], then
[tex]\begin{array}{l} i_{v_1}\phi_1\wedge\phi_2\wedge\phi_3=\phi_2\wedge\phi_3 \\
i_{v_2}\phi_1\wedge\phi_2\wedge\phi_3=-\phi_1\wedge\phi_3 \\
i_{v_3}\phi_1\wedge\phi_2\wedge\phi_3=\phi_1\wedge\phi_2
\end{array}[/tex]
so
[tex]\omega=(a_{12}i_{v_3}-a_{13}i_{v_2}+a_{23}i_{v_1}) \phi_1\wedge\phi_2\wedge\phi_3[/tex]
and given the linearity
[tex]\omega=i_v\phi_1\wedge\phi_2\wedge\phi_3[/tex]
where [itex]v=a_{21}v_1-a_{13}v_2+a_{12}v_3[/itex].
Does that prove the result?
Other idea I had is to express [itex]\phi_i[/itex] in terms of the base of [itex]\Lambda^1(V)[/itex], but I seem to going nowhere.