- #1
laminatedevildoll
- 211
- 0
The question:
Show D= {x: x [tex]\in[/tex] Q and (x [tex]\leq[/tex] or x^2 < 2)} is a dedekind cut.
A set D c Q is a Dedekind set if
1)D is not {}, D is not Q
2) if r[tex]\in[/tex] D then there exists a s [tex]\in[/tex] D s.t r<s
3) if r [tex]\in[/tex] D and if s [tex]\leq[/tex] r, then s [tex]\in[/tex] D.
For the first case, D is not an empty set because x is equal to 0 or the sqrt of 2. But, how do I prove case 2,3. Do I have to use addition/multiplication to prove them?
Show D= {x: x [tex]\in[/tex] Q and (x [tex]\leq[/tex] or x^2 < 2)} is a dedekind cut.
A set D c Q is a Dedekind set if
1)D is not {}, D is not Q
2) if r[tex]\in[/tex] D then there exists a s [tex]\in[/tex] D s.t r<s
3) if r [tex]\in[/tex] D and if s [tex]\leq[/tex] r, then s [tex]\in[/tex] D.
For the first case, D is not an empty set because x is equal to 0 or the sqrt of 2. But, how do I prove case 2,3. Do I have to use addition/multiplication to prove them?