- #1
A.Magnus
- 138
- 0
I was given this $n \times n$ matrix $A$ which is a mirror-image of identity matrix, ie., its non-main diagonal consists of entries of $1$, the rest of entries are $0$. I need to find out the determinant of $A$. Having experimented with $n = 2, 3, ...,$ I observed that for $n = 2 + 4k$ or $n = 3 + 4k$, then $det(A) = -1$. Otherwise $det(A) = 1$. But observation alone is not enough, I need to prove it to $n$. I was told that using induction will do it, but I don't know how to do it. Any helping hand would be very much appreciated, thank you before hand for your graciousness. ~MA