Proving differentiability for a function from the definition

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1715475811269.png

The solution is,
1715475847832.png

However, does someone please know why we allowed to assume that the derivative exists for f i.e ##f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}##?

Thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this problem,
View attachment 345049
The solution is,
View attachment 345050
However, does someone please know why we allowed to assume that the derivative exists for f i.e ##f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}##?

Thanks!
Because of the first sentence: Let ##f## be a differentiable function.
 
  • Like
  • Love
Likes SammyS, nuuskur and member 731016
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top