- #1
Ted123
- 446
- 0
Homework Statement
[PLAIN]http://img261.imageshack.us/img261/1228/vectorcalc.png
Homework Equations
The Attempt at a Solution
[itex]f({\bf a+h})-f(\bf{a})={\bf c\times h} + \|{\bf a+h} \| ^2 {\bf c} - \|{\bf a}\| ^2 {\bf c}[/itex]
[itex]f({\bf a+h})-f({\bf a}) = {\bf c} \times {\bf h} + {\bf c} [({\bf a}+ {\bf h}) \cdot ({\bf a} + {\bf h})] - {\bf c}({\bf a}\cdot {\bf a})[/itex]
[itex]f({\bf a+h})-f({\bf a}) = {\bf c} \times {\bf h} + {\bf c} [({\bf a}\cdot {\bf a})+ 2({\bf a} \cdot {\bf h}) + ({\bf h}\cdot {\bf h})] - {\bf c}({\bf a}\cdot {\bf a})[/itex]
[itex]f({\bf a+h})-f({\bf a}) = {\bf c} \times {\bf h} + {\bf c} ({\bf a}\cdot {\bf a}) + 2{\bf c}({\bf a} \cdot {\bf h}) + {\bf c}({\bf h}\cdot {\bf h}) - {\bf c}({\bf a}\cdot {\bf a})[/itex]
[itex]f({\bf a+h})-f({\bf a}) = {\bf c} \times {\bf h} + 2 {\bf c} ({\bf a}\cdot {\bf h}) + {\bf c}({\bf h}\cdot {\bf h})[/itex]
Is this correct up to here?
From here can I do this?:
[itex]f({\bf a+h})-f({\bf a}) = {\bf c} \times {\bf h} + {\bf c} (2{\bf a}\cdot {\bf h} + {\bf h}\cdot {\bf h})[/itex]
Can I say that [itex]Df(a)(h) = (2{\bf a}\cdot {\bf c} + {\bf h}\cdot {\bf c})(h)[/itex]
[itex]E_f ({\bf a, h}) = c \times h[/itex]
But [itex]\frac{E_f ({\bf a, h})}{\|h\|} = \frac{c \times h}{\|h\|} [/itex] doesn't tend to 0 as h tends to 0!
Last edited by a moderator: