- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey! (Wave)
I am looking at the following exercise:
Show that $a^n \mid b^n \Rightarrow a \mid b$.
According to my notes,it is like that:
Let $a^n \mid b^n$.
Let $d=(a,b)$
Then, $a=d \cdot a_1 \\ b=d \cdot b_1$
$$(a_1,b_1)=1$$
$$b^n=k \cdot a^n, \text{ for a } k \in \mathbb{Z}$$
$$d^n \cdot b_1^n=k \cdot d^n \cdot a_1^n \Rightarrow b_1^n=k \cdot a_1^n$$
Therefore, $$ a_1 \mid b_1^n=\underset{n}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \overset{(a_1,b_1)=1}{\Rightarrow} a_1 \mid \underset{n-1}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \Rightarrow a_1 \mid \underset{n-2}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \Rightarrow a_1 \mid b_1$$
So,we conclude that $b_1=l \cdot a_1, l \in \mathbb{Z}$
$$d \cdot b_1=l \cdot d \cdot a_1 \Rightarrow b \mid a \Rightarrow a \mid b$$
But...is it right?? (Thinking) We show that $(a_1,b_1)=1$ and then we conclude that $a_1 \mid b_1$... (Wasntme)
I am looking at the following exercise:
Show that $a^n \mid b^n \Rightarrow a \mid b$.
According to my notes,it is like that:
Let $a^n \mid b^n$.
Let $d=(a,b)$
Then, $a=d \cdot a_1 \\ b=d \cdot b_1$
$$(a_1,b_1)=1$$
$$b^n=k \cdot a^n, \text{ for a } k \in \mathbb{Z}$$
$$d^n \cdot b_1^n=k \cdot d^n \cdot a_1^n \Rightarrow b_1^n=k \cdot a_1^n$$
Therefore, $$ a_1 \mid b_1^n=\underset{n}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \overset{(a_1,b_1)=1}{\Rightarrow} a_1 \mid \underset{n-1}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \Rightarrow a_1 \mid \underset{n-2}{\underbrace{b_1 \cdot b_1 \cdots b_1}} \Rightarrow a_1 \mid b_1$$
So,we conclude that $b_1=l \cdot a_1, l \in \mathbb{Z}$
$$d \cdot b_1=l \cdot d \cdot a_1 \Rightarrow b \mid a \Rightarrow a \mid b$$
But...is it right?? (Thinking) We show that $(a_1,b_1)=1$ and then we conclude that $a_1 \mid b_1$... (Wasntme)