MHB Proving Divisibility of 5c+9d and 3c+10d by 23

  • Thread starter Thread starter Petek
  • Start date Start date
  • Tags Tags
    Divisibility
AI Thread Summary
The discussion focuses on proving that if 5c + 9d is divisible by 23, then 3c + 10d is also divisible by 23, where c and d are integers. Participants share solutions, with one user acknowledging a second approach that involves elementary number theory and Diophantine equations. The conversation highlights the collaborative nature of problem-solving in mathematics, with users expressing gratitude for each other's contributions. The thread emphasizes the importance of exploring multiple methods to reach a solution. Overall, the discussion showcases the interplay between different mathematical techniques in proving divisibility.
Petek
Gold Member
Messages
405
Reaction score
37
Let c and d be integers. Suppose that 5c + 9d is divisible by 23. Show that 3c + 10d also is divisible by 23.
 
Mathematics news on Phys.org
5c + 9d is divisible by 23
multiplying by 15
75c + 135d is divisible by 23

subtracting 69c + 115d a multiple of 23 we have

6c + 20d is divisible by by 23

or 2(3c+ 10d) is divisible by by 23

as 2 is not divisible by 23 so 3c + 10d is divisible by 23
 
@kaliprasad Thanks for your solution. In addition to yours, I found a second solution that requires more knowledge about elementary number theory. As a hint, it uses facts about Diophantine equations. I'll post again in a few days if no one finds what I was thinking of.
 
First observe that $5^{-1}\equiv -9\pmod{23}$. That is because $5\cdot -9\equiv -45 \equiv 1\pmod{23}$.

That fact that $5c+9d$ is divisible by $23$ means:
\[ 5c + 9d\equiv 0\pmod{23}\implies c\equiv 5^{-1}\cdot -9d\pmod{23}\implies c\equiv -9\cdot -9 d\equiv 81 d\equiv 12d\pmod{23} \]
Therefore:
\[ 3c + 10d \equiv 3\cdot 12d+10d\equiv 46 d\equiv 0 \pmod{23} \]
So $3c + 10d$ is also divisible by $23$.
 
The solutions of $23\mid 5c+9d$ are $c=-9+23k$ and $d=5+23m$.
Substitute in $3c+10d$ to find $3(-9+23k)+10(5+23m)=-23+23(3k+10m)$, which is divisible by $23$.
 
Last edited:
Klass' second solution is the alternate one that I had in mind. Thanks to all for their contributions.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top