- #1
Zebx
- 12
- 3
Hi all. I'm trying to prove energy conservation in a (maybe) uncommon way. I know there are different ways to do this, but it is asked me to prove it this way and I'm stucked at the end of the proof. I'm considering ##N## bodies moving in a gravitational potential, such that the energy is ##E = K + V##, with ##K## kinetic energy, ##V = Gm_im_j/r_{ij}## the potential energy (##i \neq j##) and ##r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}## the distance between the bodies. The complete expression for the energy is
$$
E = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\vec{r}}_i \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i,j=1}^{N} \frac{Gm_im_j}{r_{ij}},
\tag{1}
$$
with dotted variables representing the derivative with respect to time and the ##1/2## term before the second summation is there to avoid to consider the same values of ##V## two times (the term with ##(i,j) = (a,b)## are the same as the one with ##(i,j) = (b,a)##, with ##a,b## from ##1## to ##N##). If ##E## is conserved, then ##\dot{E} = 0##:
$$
\dot{E} = \frac{1}{2} \sum_{i=1}^{N} 2m_i\dot{\vec{r}}_i \cdot\ddot{\vec{r}}_i + \frac{1}{2} \sum_{i,j=1}^{N} \frac{Gm_im_j}{r_{ij}^3}(\vec{r}_i - \vec{r}_j) \cdot (\dot{\vec{r}}_i - \dot{\vec{r}}_j),
\tag{2}
$$
with ##(\vec{r}_i - \vec{r}_j)(\dot{\vec{r}}_i - \dot{\vec{r}}_j)/r_{ij} \equiv \dot{r}_{ij}##. What I do then is
$$
\begin{align}
\dot{E} & = \sum_{i=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_i + \frac{1}{2} \sum_{i=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i,j=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_j \nonumber \\
& = \sum_{i=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i=1}^{N} \vec{F}_j \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i,j=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_j \nonumber
\end{align}
\tag{3}
$$
with ##\vec{F}_i = m_i \ddot{\vec{r}}_i## being the gravitational force experienced by the mass ##i## from the ##j## other bodies, so it is also ##\vec{F}_i = \sum_{j=1}^{N}Gm_im_j(\vec{r}_i - \vec{r}_j)/r_{ij}^3##. This is the point where I'm stucked. If everything's correct, I should prove that ##\vec{F}_j \cdot \dot{\vec{r}}_i = \vec{F}_i \cdot \dot{\vec{r}}_j## but I don't see any chance for this to happen unless I impose ##\dot{\vec{r}}_i + \dot{\vec{r}}_j = 0##, but of course it can't be done so I don't know how could I proceed.
$$
E = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\vec{r}}_i \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i,j=1}^{N} \frac{Gm_im_j}{r_{ij}},
\tag{1}
$$
with dotted variables representing the derivative with respect to time and the ##1/2## term before the second summation is there to avoid to consider the same values of ##V## two times (the term with ##(i,j) = (a,b)## are the same as the one with ##(i,j) = (b,a)##, with ##a,b## from ##1## to ##N##). If ##E## is conserved, then ##\dot{E} = 0##:
$$
\dot{E} = \frac{1}{2} \sum_{i=1}^{N} 2m_i\dot{\vec{r}}_i \cdot\ddot{\vec{r}}_i + \frac{1}{2} \sum_{i,j=1}^{N} \frac{Gm_im_j}{r_{ij}^3}(\vec{r}_i - \vec{r}_j) \cdot (\dot{\vec{r}}_i - \dot{\vec{r}}_j),
\tag{2}
$$
with ##(\vec{r}_i - \vec{r}_j)(\dot{\vec{r}}_i - \dot{\vec{r}}_j)/r_{ij} \equiv \dot{r}_{ij}##. What I do then is
$$
\begin{align}
\dot{E} & = \sum_{i=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_i + \frac{1}{2} \sum_{i=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i,j=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_j \nonumber \\
& = \sum_{i=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i=1}^{N} \vec{F}_j \cdot \dot{\vec{r}}_i - \frac{1}{2} \sum_{i,j=1}^{N} \vec{F}_i \cdot \dot{\vec{r}}_j \nonumber
\end{align}
\tag{3}
$$
with ##\vec{F}_i = m_i \ddot{\vec{r}}_i## being the gravitational force experienced by the mass ##i## from the ##j## other bodies, so it is also ##\vec{F}_i = \sum_{j=1}^{N}Gm_im_j(\vec{r}_i - \vec{r}_j)/r_{ij}^3##. This is the point where I'm stucked. If everything's correct, I should prove that ##\vec{F}_j \cdot \dot{\vec{r}}_i = \vec{F}_i \cdot \dot{\vec{r}}_j## but I don't see any chance for this to happen unless I impose ##\dot{\vec{r}}_i + \dot{\vec{r}}_j = 0##, but of course it can't be done so I don't know how could I proceed.