- #1
- 909
- 1,135
Homework Statement
Show that [tex]\sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n}{k} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n-1} + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}[/tex]
Homework Equations
The Attempt at a Solution
Writing out few of the summands:
[tex]\frac{n!}{1\cdot 1!(n-1)!} - \frac{n!}{2\cdot 2!(n-2)!} + \frac{n!}{3\cdot 3!(n-3)!} - \frac{n!}{4\cdot 4!(n-4)!} +...\\
n!(\frac{1}{1\cdot 1!(n-1)!}-\frac{1}{2\cdot 2!(n-2)!}+\frac{1}{3\cdot 3!(n-3)!}-\frac{1}{4\cdot 4!(n-4)!} + ...)[/tex]
if this really adds up the way it's going to, I would somehow have to show that what is between the parenthesis adds up to [itex]\frac{1}{k\cdot n!}[/itex]then [itex]n!\cdot \frac{1}{k\cdot n!}[/itex] would be 1/k: what I am looking for.
How should I proceed?