MHB Proving equivalence to Euclid Parallel Postulate

AI Thread Summary
The discussion centers on proving the equivalence between the Euclid Parallel Postulate and Proclus’s Axiom. The Euclid Parallel Postulate asserts that for any line and a point not on it, there exists exactly one parallel line through that point. In contrast, Proclus’s Axiom states that if two lines are parallel, any line intersecting one must also intersect the other. A user demonstrates that the Parallel Postulate implies Proclus’s Axiom by showing that if a line intersects a parallel line, it cannot be parallel to the other. The conversation invites further exploration of the converse relationship.
pholee95
Messages
9
Reaction score
0
I'm having a hard time proving that the Euclid Parallel Postulate is equivalent to this theorem. Can anyone please help?

Euclid Parallel Postulate states: For every line l and point P not on l, there exists exactly one line m so that P is on m and m||l.

the theorem states: (Proclus’s Axiom) If l and l' are parallel lines and t is not equal to l is a line such that t intersects
l then t also intersects l'.
 
Mathematics news on Phys.org
pholee95 said:
I'm having a hard time proving that the Euclid Parallel Postulate is equivalent to this theorem. Can anyone please help?

Euclid Parallel Postulate states: For every line l and point P not on l, there exists exactly one line m so that P is on m and m||l.

the theorem states: (Proclus’s Axiom) If l and l' are parallel lines and t is not equal to l is a line such that t intersects
l then t also intersects l'.
Let's show that the Parallel postulate implies Proclus.

Let $\ell$ and $\ell'$ be parallel lines and $t$ be a line different from $\ell$ which intersects $\ell$. We want to show that $t$ intersects $\ell'$. Say $t$ intersects $\ell$ in a point $p$. If $\ell=\ell'$ then there is nothing to prove. So assume that $\ell\neq \ell'$. So $\ell$ is a line passing through $p$ which is parallel to $\ell'$. By the Parallel Postulate, $\ell$ is the unique such line since $p$ is not on $\ell'$. Thus $t$ cannot be parallel to $\ell'$. Therefore $t$ must intersect $\ell'$ and we are done.

Can you try the converse?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top