- #1
simo1
- 29
- 0
is there any easier way of proving that no matter how an identical permutation say (e) is written the number of transpositins is even.
my work
i tried let t_1...t_n be m transpositions then try to prove that e can be rewritten as a product of m-2transpositions.
i had x be any numeral appearing in one of the transpositions t_1...t_n where t_k=(xa) and t_k is the last transposition in e=t_1t_2...t_m. i tried this and it seems very long:(
my work
i tried let t_1...t_n be m transpositions then try to prove that e can be rewritten as a product of m-2transpositions.
i had x be any numeral appearing in one of the transpositions t_1...t_n where t_k=(xa) and t_k is the last transposition in e=t_1t_2...t_m. i tried this and it seems very long:(