- #1
Enjoicube
- 49
- 1
Homework Statement
If Sup A<Sup B Then show that there exists a b[tex]\in[/tex]B which serves as an upper bound for A.
First off, I am not looking for a complete solution but rather a hint.
Homework Equations
SupA-[tex]\epsilon[/tex]<a for some a[tex]\in[/tex]A
SupB-[tex]\epsilon[/tex]<b for some b[tex]\in[/tex]B
The Attempt at a Solution
The only thing I have succeeded in so far is "locating one element of each set"
SupA-[tex]\epsilon[/tex]<a[tex]\leq[/tex]SupA for some a[tex]\in[/tex]A
SupB-[tex]\epsilon[/tex]<b[tex]\leq[/tex]SupB for some b[tex]\in[/tex]B
I know that if I can demonstrate that SupA[tex]\leq[/tex]SupB-[tex]\epsilon[/tex], then I can be done. Equivalently, if I can show that b[tex]\geq[/tex]SupA for some b[tex]\in[/tex]B I will also be done. However, right now this has me caught.