- #1
mahler1
- 222
- 0
Homework Statement .
Let ##(M,d)## be a metric space and let ##f:M \to M## be a continuous function such that ##d(f(x),f(y))>d(x,y)## for every ##x, y \in M## with ##x≠y##. Prove that ##f## has a unique fixed point
The attempt at a solution.
The easy part is always to prove unicity. Suppose there exist ##x,y##, ##x≠y## : ##x## and ##y## are both fixed points. Then ##d(x,y)=d(f(x),f(y)>d(x,y)##, which is absurd. Then, ##x## must be unique.
Now I have to prove existence and here I had problems:
First I've tried to prove it trying to repeat the standard proof of the fixed point theorem on a complete m.e. with ##f## being a contraction, I mean:
Let ##x## be an arbitrary element in M, I've defined a sequence ##\{x_n\}_{n \in \mathbb N} : x_1=x, x_2=f(x_1)=f(x), x_3=f(x_2)=f^2(x_1)## and, in general, ##x_n=f(x_{n-1})=f^{n-1}(x)##.
As ##M## is compact, there exists ##\{x_{n_k}\}_{k \in \mathbb N}## a convergent subsequence of ##\{x_n\}_{n \in \mathbb N}##. Then, ##x_{n_k} \to z##. I would love to apply ##f## and say ##z=lim_{k \to \infty} x_{n_{k+1}}=f(lim_{k \to \infty} x_{k_n})=f(z)## (using that ##f## is continuous), but then I've realized this is completely wrong as ##f(x_{n_k})=x_{n_k+1}≠x_{n_{k+1}}##.
Let ##(M,d)## be a metric space and let ##f:M \to M## be a continuous function such that ##d(f(x),f(y))>d(x,y)## for every ##x, y \in M## with ##x≠y##. Prove that ##f## has a unique fixed point
The attempt at a solution.
The easy part is always to prove unicity. Suppose there exist ##x,y##, ##x≠y## : ##x## and ##y## are both fixed points. Then ##d(x,y)=d(f(x),f(y)>d(x,y)##, which is absurd. Then, ##x## must be unique.
Now I have to prove existence and here I had problems:
First I've tried to prove it trying to repeat the standard proof of the fixed point theorem on a complete m.e. with ##f## being a contraction, I mean:
Let ##x## be an arbitrary element in M, I've defined a sequence ##\{x_n\}_{n \in \mathbb N} : x_1=x, x_2=f(x_1)=f(x), x_3=f(x_2)=f^2(x_1)## and, in general, ##x_n=f(x_{n-1})=f^{n-1}(x)##.
As ##M## is compact, there exists ##\{x_{n_k}\}_{k \in \mathbb N}## a convergent subsequence of ##\{x_n\}_{n \in \mathbb N}##. Then, ##x_{n_k} \to z##. I would love to apply ##f## and say ##z=lim_{k \to \infty} x_{n_{k+1}}=f(lim_{k \to \infty} x_{k_n})=f(z)## (using that ##f## is continuous), but then I've realized this is completely wrong as ##f(x_{n_k})=x_{n_k+1}≠x_{n_{k+1}}##.
Last edited: