MHB Proving $f(2) \geq 27$ with Positive Coefficients

AI Thread Summary
To prove that $f(2) \geq 27$ for the polynomial $f(x) = x^3 + ax^2 + bx + 1$ with non-negative coefficients $a$ and $b$, and all roots being real, the analysis focuses on evaluating $f(2)$. Substituting $x = 2$ gives $f(2) = 8 + 4a + 2b + 1 = 9 + 4a + 2b$. The conditions on the roots imply that the polynomial's behavior is constrained, leading to the conclusion that the minimum value of $f(2)$ occurs when $a$ and $b$ are minimized. Ultimately, the derived inequality confirms that $f(2)$ indeed meets or exceeds 27 under the given constraints.
Albert1
Messages
1,221
Reaction score
0
given :$f(x)=x^3+ax^2+bx+1$ with $a\geq 0 \,\, and \,\, b\geq 0$ and also all of the three roots of $f(x)=0$ are real numbers,

prove $f(2)\geq 27$
 
Mathematics news on Phys.org
Albert said:
given :$f(x)=x^3+ax^2+bx+1$ with $a\geq 0 \,\, and \,\, b\geq 0$ and also all of the three roots of $f(x)=0$ are real numbers,

prove $f(2)\geq 27$
using Descartes' Rule of Signs all of the three roots of $f(x)=0---(1)$ must be negative
and let $-x_1,-x_2,-x_3$ be the solutions of $(1)$
(here $x_1,x_2,x_3>0$)
from Vieta's formulas and $AP\geq GP$ we have:
$x_1x_2x_3=1---(2)$
from $(2)$
$a=x_1+x_2+x_3\geq 3\sqrt[3]{x_1x_2x_3}=3---(3)\\
b=x_1x_2+x_1x_3+x_2x_3\geq 3\sqrt[3]{x_1^2x_2^2x_3^2}=3---(4)\\$
from $(3)(4):f(2)\geq 27=2^3+3\times 2^2+3\times 2+1=8+12+6+1$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top