- #1
solakis1
- 422
- 0
Given the definition of floor value :
For all A,B we define the floor value of A denoted by [A] to be an iteger B such that : $[A]=B\Leftrightarrow B\leq A<B+1$
And in symbols $\forall A\forall B ( [A]=B\Leftrightarrow B\leq A<B+1\wedge B\in Z)$,then prove:
For all A $ [A]\leq A<[A]+1$
For all A,B we define the floor value of A denoted by [A] to be an iteger B such that : $[A]=B\Leftrightarrow B\leq A<B+1$
And in symbols $\forall A\forall B ( [A]=B\Leftrightarrow B\leq A<B+1\wedge B\in Z)$,then prove:
For all A $ [A]\leq A<[A]+1$