- #1
Government$
- 87
- 1
Homework Statement
Show that [itex]\frac{a+b}{2}\geq\sqrt{ab}[/itex] for [itex]0 < a \leq b[/itex]
The Attempt at a Solution
Since [itex]b \geq a[/itex] then [itex]b + a \geq 2a[/itex] and [itex]2b\geq a + b[/itex]
That is [itex]\frac{a+b}{2}\geq a[/itex] and [itex]\frac{a+b}{2}\leq b[/itex].
Since [itex]\frac{a+b}{2}\leq b[/itex] can i multiply [itex]\frac{a+b}{2}\geq a[/itex] with [itex]b[/itex]?
If i can do that then [itex](\frac{a+b}{2})^{2}\geq ab[/itex] that is:
[itex]\frac{a+b}{2}\geq \sqrt{ab}[/itex]
On a side note if problem says prove something for all positive intigers a,b and c.
That means that a>0 , b>0, c>0 but can i take from that, [itex]a\geq b\geq c > 0[/itex]?