Proving function discontinuous at zero

  • #1
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1715473246207.png

THe solution is,
1715473263511.png

However, does someone please know why from this step ##-1 \leq \cos(\frac{1}{x}) \leq 1## they don't just do ##-x \leq x\cos(\frac{1}{x}) \leq x## from multiplying both sides by the monomial linear function ##x##

##\lim_{x \to 0} - x = \lim_{x \to 0} x= 0## then use squeeze principle and reach the same conclusion as them

Thanks!
 
Physics news on Phys.org
  • #2
When ##x## goes to 0, you do not know if it is positive or negative. If it is negative, then ##-x \le x## is false. Using the absolute values, ##-|x| \le |x|## solves that problem.
 
  • Love
Likes member 731016
  • #3
If ##f(x)## is a continuous function, then ##\lim_{x \to a} f(x)= f(a)\;\;(*).## Hence, if we assume - in order to derive a contradiction - that ##f(x)=x \cdot \cos(x^{-1})## was continuous, and ##-|x|\leq f(x)\leq |x|## for ##x\neq 0##, then both together results in
$$
0=\lim_{x \to 0} (-|x|) \leq \lim_{ \array{ x \to 0 \\ x\neq 0} } f(x)=\lim_{ \array{ x \to 0 \\ x\neq 0} }(x\cdot\cos(x^{-1}))\leq \lim_{x \to 0}|x|=0.
$$
With ##(*)## we get ##\displaystyle{\lim_{\array{ x \to 0 \\ x\neq 0}} f(x)=\lim_{\array{ x \to 0 \\ x\neq 0}}(x\cdot\cos(x^{-1}))=f(0)=0}## if ##f(x)## was continuous. Since ##f(0)=2,## ##f(x)## cannot be continuous at ##x=0.##
 
  • Love
Likes member 731016

Similar threads

Replies
5
Views
601
Replies
8
Views
591
Replies
10
Views
1K
Replies
2
Views
1K
Replies
7
Views
592
Back
Top