- #1
latentcorpse
- 1,444
- 0
How do I verify [itex] \{ \gamma^5 , \gamma^\mu \} = 0[/itex]
I have
[itex] \{ \gamma^5 , \gamma^\mu \} = \gamma^5 \gamma^\mu + \gamma^\mu \gamma^5[/itex]
[itex]= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^5 \gamma^0 \gamma^1 \gamma^2 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^5 \gamma^1 \gamma^2 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^5 \gamma^2 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^1 \gamma^2 \gamma^5 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )[/itex]
But this is not quite right, because at some point I will have shifted the [itex]\gamma^\mu[/itex] past itself and so I will get an additional term [itex]+2 \eta^{ \mu \mu}[/itex] since [itex] \{ \gamma^\mu , \gamma^\nu \} = 2 \eta^{\mu \nu}[/itex]
So I should get three terms:
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 -2 \eta^{\mu \mu} \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )[/itex]
and then
[itex] = -i ( (2-2 \eta^{\mu \mu}) \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5) \neq 0[/itex] since [itex]\eta^{\mu \mu} = 4[/itex], no?
I have
[itex] \{ \gamma^5 , \gamma^\mu \} = \gamma^5 \gamma^\mu + \gamma^\mu \gamma^5[/itex]
[itex]= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^5 \gamma^0 \gamma^1 \gamma^2 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^5 \gamma^1 \gamma^2 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^5 \gamma^2 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^1 \gamma^2 \gamma^5 \gamma^3 )[/itex]
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )[/itex]
But this is not quite right, because at some point I will have shifted the [itex]\gamma^\mu[/itex] past itself and so I will get an additional term [itex]+2 \eta^{ \mu \mu}[/itex] since [itex] \{ \gamma^\mu , \gamma^\nu \} = 2 \eta^{\mu \nu}[/itex]
So I should get three terms:
[itex] = -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 -2 \eta^{\mu \mu} \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )[/itex]
and then
[itex] = -i ( (2-2 \eta^{\mu \mu}) \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5) \neq 0[/itex] since [itex]\eta^{\mu \mu} = 4[/itex], no?