Proving Identity: |a × b|² + (a•b)² = |a|²|b|²

  • Thread starter Thread starter Macleef
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion focuses on proving the identity |a × b|² + (a • b)² = |a|²|b|², which connects the cross product and dot product of two vectors. The initial steps involve using the definitions of the cross product and dot product in terms of the magnitudes of the vectors and the angle θ between them. The user expresses confusion about their calculations and whether they made errors in their approach. They also seek guidance on how to proceed after recognizing that the expression simplifies to |a|²|b|²(sin²θ + cos²θ). The conversation emphasizes the importance of understanding the relationship between these vector operations and the trigonometric identity sin²θ + cos²θ = 1, which is crucial for completing the proof.
Macleef
Messages
30
Reaction score
0

Homework Statement



The identity below is significant because it relates 3 different kinds of products: a cross product and a dot product of 2 vectors on the left side, and the product of 2 real numbers on the right side. Prove the identity below.

| a × b |² + (a • b)² = |a|²|b|²

Homework Equations



| a × b | = |a||b|sinθ
(a • b) = |a||b|cosθ

The Attempt at a Solution



My work, LSH:

= | a × b |² + (a • b)²

= (|a||b|sinθ)(|a||b|sinθ) + (|a||b|cosθ)(|a||b|cosθ)

= (|a|²)(|a||b|)(|a|sinθ)(|a||b|)(|b|²)(|b|sinθ)(|a| sinθ)(|b|sinθ)(sin²θ) + (|a|²)(|a||b|)(|a|cosθ)(|a||b|)(|b|²)(|b|cosθ)(|a| cosθ)(|b|cosθ)(cos²θ)

= (|a|²)(|a||b|)²(|a|sinθ)²(|b|²)(|b|sinθ)²(sin²θ) + (|a|²)(|a||b|)²(|a|cosθ)²(|b|²)(|b|cosθ)²(cos²θ)

= (|a|²|b|²(|a||b|)²) [(|a|sinθ)²(|b|sinθ)²(sin²θ) + (|a|cosθ)²(|b|²)(|b|cosθ)²(cos²θ)]

= (|a|²|b|²(|a||b|)²) [(|a|²)(sin²θ)(|b|²)(sin²θ)(sin²θ) + (|a|²)(cos²θ)(|b|²)(|b|²)(cos²θ)(cos²θ)]

= (|a|²|b|²(|a||b|)²) [(sin²θ)(sin²θ)(sin²θ) + (cos²θ)(cos²θ)(cos²θ)]


And now I don't know what else to do! Please help. Did I mess up somewhere in my steps? Or is it possible to common factor still?
 
Physics news on Phys.org
Stop with this. (|a||b|sinθ)(|a||b|sinθ) + (|a||b|cosθ)(|a||b|cosθ). That's |a|^2*|b|^2*(sin^2(theta)+cos^2(theta)). Now what? I don't know what you are doing on the following lines.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 4 ·
Replies
4
Views
5K