MHB Proving Identity: $\sin^8A-\cos^8A$

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion focuses on proving the identity $\sin^8(A) - \cos^8(A)$ through various algebraic manipulations. It starts by expressing the left-hand side in terms of $\sin^2(A)$ and $\cos^2(A)$, utilizing the difference of squares formula. Participants explore factorizations and substitutions to simplify the expression, ultimately leading to the conclusion that the identity can be rewritten in terms of squares of sine and cosine. The key takeaway is the importance of reducing higher powers to squares for easier manipulation and proof. The discussion emphasizes the algebraic relationships between sine and cosine in trigonometric identities.
Silver Bolt
Messages
8
Reaction score
0
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?
 
Mathematics news on Phys.org
Silver Bolt said:
$\sin^8\left({A}\right)-\cos^8\left({A}\right)=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$L.H.S=(\sin^2\left({A}\right)-\cos^2\left({A}\right)(1-2\sin^2\left({A}\right)\cos^2\left({A}\right))$

$ =(\sin\left({A}\right)+\cos\left({A}\right)) (\sin\left({A}\right)-\cos\left({A}\right)(\cos^2\left({A}\right)-\sin^2\left({A}\right))^2$

Any ideas?

$\sin^8\left({A}\right)-\cos^8\left({A}\right)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^4\left({A}\right)-\cos^4\left({A}\right)$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)+\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2-b^2= (a+b)(a-b)$
= $(\sin^4\left({A}\right)+\cos^4\left({A}\right))(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$ using $a^2+b^2 = + (a+b)^2 - 2ab$
= $((\sin^2\left({A}\right)+\cos^2\left({A}\right))^2-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$
= $(1-2 \sin^2\left({A}\right)\cos^2\left({A}\right)(\sin^2\left({A}\right)-
\cos^2\left({A}\right))$

The rational is that we need to reduce the power to squares of sin and cos
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
1K
Replies
11
Views
2K
Replies
2
Views
972
Replies
2
Views
2K
Replies
2
Views
1K
Back
Top